from google.colab import files
uploaded = files.upload()
import pandas as pd # μ
λ‘λνλ λ°©μμΌλ‘ μ§ννμμ΅λλ€.
file1 = pd.read_csv('n113_λ§λ¦¬νλ.txt', sep='\t')
file2 = pd.read_csv('n113_ν΄μ΄.txt', sep='\t') # txt λ°μ΄ν°λΌ ꡬλΆμλ₯Ό μ ν΄μ£Όμμ΅λλ€.
λ°μ΄ν° μ μ²λ¦¬ κ³Όμ μ½λλ μλ΅νκ³μ΅λλ€.
μμ κ°μ΄ λ°μ΄ν°λ₯Ό μ 리ν ν 'ν λ§'λ‘ κ° μ»¬λΌμ νκ· ν μ΄λΈμ λ§λ€μμ΅λλ€.
df1 = df.groupby('ν
λ§').mean()
!sudo apt-get install -y fonts-nanum
!sudo fc-cache -fv
!rm ~/.cache/matplotlib -rf
import matplotlib.pyplot as plt
plt.rc('font', family='NanumBarunGothic') # νκΈ ν°νΈ κΉ¨μ§μ§ μκ² ν΄μ£Όλ μμ
μ
λλ€!(λ무 μμ€)
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(20,5))
ax1 = plt.subplot(1, 3, 1)
ax2 = plt.subplot(1, 3, 2)
ax3 = plt.subplot(1, 3, 3)
sns.barplot(x=df1.index, y='맀μΆμ‘', data=df1, ax=ax1)
sns.barplot(x=df1.index, y='μμ°μ΄κ³', data=df1, ax=ax2)
sns.barplot(x=df1.index, y='μ£ΌλΉμμ΄μ΅', data=df1, ax=ax3)
plt.show()
'πΏ Data > μ΄λͺ¨μ λͺ¨' μΉ΄ν κ³ λ¦¬μ λ€λ₯Έ κΈ
ANOVA μμ, μ¬λ¬ μνλ§ (0) | 2021.12.10 |
---|---|
Python λ―ΈλΆ (0) | 2021.12.10 |
Feature Engineering_κ²°μΈ‘μΉ μ²λ¦¬, apply ν¨μ μ μ© (0) | 2021.12.09 |
Seaborn 'penguins' (0) | 2021.12.09 |
λ°μ΄ν° λ€λ£¨κΈ° μμ2 (0) | 2021.12.07 |