๐Ÿ’ฟ Data

    [TIL] 83. Image Segmentation, Object Detection/Recognition

    ํ‚ค์›Œ๋“œ Segmentation(Semantic / Instance) Transpose Convolution Object Detection/Recognition Image Segmentation ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€์—์„œ ๊ฐ™์€ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋ฌผ์ฒด๋ฅผ ๋‹จ์œ„๋กœ ๊ตฌ๋ถ„ํ•ด๋‚ด๋Š” Task ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ : ์ด๋ฏธ์ง€ ์ž์ฒด๋ฅผ ํ•˜๋‚˜์˜ label๋กœ ์˜ˆ์ธก(๋‚˜๋ฌด ์‚ฌ์ง„์„ ๋‚˜๋ฌด๋กœ ์˜ˆ์ธก) ์ด๋ฏธ์ง€ ๋ถ„ํ•  : ์ด๋ฏธ์ง€ ๋‚ด์— ์—ฌ๋Ÿฌ ์‚ฌ๋ฌผ๋“ค์„ ์˜๋ฏธ์žˆ๋Š” ๋‹จ์œ„๋กœ ๊ตฌ๋ถ„ -> ํ”ฝ์…€ ๋‹จ์œ„๋กœ label ์˜ˆ์ธก [Segmentation] Semantic VS (semantic) Instance Semantic : ์œ„์—์„œ์™€ ๊ฐ™์ด ์˜๋ฏธ์žˆ๋Š” ๋‹จ์œ„๋กœ ๋ฌผ์ฒด๋ฅผ ๊ตฌ๋ถ„ ex) ์‚ฌ๋žŒ -> ์‚ฌ๋žŒ, ๊ฐ•์•„์ง€ -> ๊ฐ•์•„์ง€ Semantic Instance : ๊ฐ ๊ฐœ์ฒด ๋ณ„๋กœ ๊ตฌ๋ถ„ ex) ์‚ฌ๋žŒ1, ์‚ฌ๋žŒ2..

    [๋”ฅ๋Ÿฌ๋‹, CV] FCN, ๊ฐ์ฒด ํƒ์ง€/์ธ์‹

    Semantic Segmentation(์˜๋ฏธ๋ก ์  ๋ถ„ํ• ) ์œ„ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ๊ฐœ์ฒด์™€ ์ƒ๊ด€์—†์ด ๊ฐ™์€ ์˜๋ฏธ๋ฅผ ๊ฐ–๋Š” ๋‹จ์œ„๋กœ ๋ถ„ํ• ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. U-net ์ด๋ฏธ์ง€ ๋ถ„ํ• ์„ ์œ„ํ•œ ๋Œ€ํ‘œ์ ์ธ ๋ชจ๋ธ ์ค‘ ํ•˜๋‚˜๋กœ End-to-End ๋ฐฉ์‹์˜ FCN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํฌ๊ฒŒ Downsampling๊ณผ Upsampling ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋‰˜์–ด์ง‘๋‹ˆ๋‹ค. Downsampling์€ Convolution ๋ฐ Pooling ๊ณผ์ •์„ ํ†ตํ•ด ์ด๋ฏธ์ง€์˜ ํŠน์ง•์„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค. Upsampling์˜ ๊ฒฝ์šฐ Convolution ๋ฐ Transpose Convolution ๊ณผ์ •์„ ํ†ตํ•ด ์›๋ณธ๊ณผ ๋น„์Šทํ•œ ํฌ๊ธฐ๋กœ ๋ณต์›ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Downsampling ๊ฐ level์—์„œ์˜ output์ธ feature map์„ ์ ๋‹นํ•œ ํฌ๊ธฐ๋กœ ๋งŒ๋“ค์–ด ๊ฐ™์€ level์—์„œ์˜ Upsampling in..

    [TIL] 82. ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(CNN) ๋ฐ ์ „์ด ํ•™์Šต(Transfer Learning)

    ํ‚ค์›Œ๋“œ CNN(Convolutional Neural Network) padding, stride, filter Pooling Transfer Learning Image Data Augmentation CNN(Convolutional Neural Network ; ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง) ์ปดํ“จํ„ฐ ๋น„์ „์—์„œ ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” ์‹ ๊ฒฝ๋ง ์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„์ ์ธ ํŠน์„ฑ์„ ์ตœ๋Œ€ํ•œ ๋ณด์กดํ•˜๋ฉฐ ํ•™์Šตํ•˜๊ธฐ์— ์ข‹์Œ [CNN]๊ตฌ์กฐ ํฌ๊ฒŒ ํŠน์ง• ์ถ”์ถœ ๋ถ€๋ถ„ ๊ณผ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ์‹ ๊ฒฝ๋ง ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. [CNN] ํŠน์ง• ์ถ”์ถœ ๋ถ€๋ถ„ [CNN] ํ•ฉ์„ฑ๊ณฑ(Convolution) ๊ฒฉ์ž ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ํŠน์ • ๊ฒฉ์ž์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง„ ํ•„ํ„ฐ๋ฅผ ํ†ตํ•ด ํ•ฉ์„ฑ๊ณฑ์„ ์ง„ํ–‰ํ•ด๋‚˜์•„๊ฐ‘๋‹ˆ๋‹ค. ํ•„ํ„ฐ์˜ ๊ฒฉ์ž ๊ฐฏ์ˆ˜๊ฐ€ ๊ณง ๊ฐ€์ค‘์น˜๋“ค์ด ๋ฉ๋‹ˆ๋‹ค. ex) ํ•„ํ„ฐ (5, 5), ํ•„ํ„ฐ ๊ฐฏ์ˆ˜ 3,..

    [๋”ฅ๋Ÿฌ๋‹, CV] CNN ๊ธฐ๋ณธ, ์ „์ด ํ•™์Šต ๊ฐœ๋…

    ํ•ฉ์„ฑ๊ณฑ ์ธต(Convolution layer) ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜๋Š” ์ธต ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ผ์ • ๊ฒฉ์ž ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์€ ๊ฒฉ์ž์˜ ํ•„ํ„ฐ๋กœ ์ •ํ•ด์ง„ stride(ํ•„ํ„ฐ๊ฐ€ ์›€์ง์ด๋Š” ๊ฐ„๊ฒฉ)์— ๋”ฐ๋ผ ํ•ฉ์„ฑ๊ณฑ์„ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ํ•ฉ์„ฑ๊ณฑ์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์˜ (0, 0)๋ถ€ํ„ฐ (-1, -1)๊นŒ์ง€ ํ•„ํ„ฐ์˜ ๊ฒฉ์ž์— ํ•ด๋‹นํ•˜๋Š” ๊ฐ’๊ณผ ๊ณฑํ•˜์—ฌ ๋ชจ๋‘ ๋”ํ•˜๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ํŒจ๋”ฉ(Padding) ํ•ฉ์„ฑ๊ณฑ ๊ณผ์ •์—์„œ output์˜ shape์„ input๊ณผ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์˜ ๊ฐ ๊ฒฉ์ž๊ฐ’์„ ๊ฐ€๋Šฅํ•œ ๊ท ํ˜•์žˆ๊ฒŒ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ•ด์ฃผ๋Š” ์ž‘์—…์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ด๋ฏธ์ง€ ๊ฒฉ์ž์˜ ํ…Œ๋‘๋ฆฌ์— 0 ๊ฐ’์œผ๋กœ ๋‘˜๋Ÿฌ์ฃผ๋Š” ์ž‘์—…์„ ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ŠคํŠธ๋ผ์ด๋“œ(Stride) ํ•ฉ์„ฑ๊ณฑ ๊ณผ์ •์—์„œ ํ•„ํ„ฐ๊ฐ€ slideํ•  ๋•Œ ์›€์ง์ด๋Š” ๊ฐ„๊ฒฉ๊ฐ’์ž…๋‹ˆ๋‹ค. ..

    [๋”ฅ๋Ÿฌ๋‹, NLP] ๋‹ค์–‘ํ•œ ํ…์ŠคํŠธ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•

    1. ํ…์ŠคํŠธ ์ „์ฒ˜๋ฆฌ 1-1. ๋‹จ์ˆœ ํ† ํฐํ™” exam = ["I want to be a superman. Sometimes, I imagine that i have a super power and fly to the sky without anything. Someone says 'it's not possible', but i trust myself.", "I feel better than anytime."] import spacy from spacy.tokenizer import Tokenizer nlp = spacy.load("en_core_web_sm") tok = Tokenizer(nlp.vocab) exam_token = [] for doc in tok.pipe(exam): do..