๐Ÿ’ฟ Data

    [TIL]75. ์‹ ๊ฒฝ๋ง ๊ฐœ๋… ์ •๋ฆฌ

    ์Šค์Šค๋กœ ์šฉ์–ด ์ •๋ฆฌํ•ด๋ณด๊ธฐ Neuron: ์‹ ๊ฒฝ๊ณ„๋ฅผ ์ด๋ฃจ๋Š” ๊ธฐ๋ณธ ๋‹จ์œ„. ์‹ ๊ฒฝ ์„ธํฌ์™€ ์‹ ๊ฒฝ ์กฐ์ง์„ ์ด๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ ์ธ๊ณต ์‹ ๊ฒฝ๋ง(Neural Network) ๋™์ž‘ ์›๋ฆฌ์˜ ๊ธฐ์ดˆ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. Input Layer: ์ธ๊ณต ์‹ ๊ฒฝ๋ง์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ์ธต. ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ ๊ฐฏ์ˆ˜๊ฐ€ ๊ณง ์ž…๋ ฅ์ธต์˜ ๋…ธ๋“œ ์ˆ˜๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค๋ฅธ ์ธต๊ณผ ๋‹ฌ๋ฆฌ ์ž…๋ ฅ์ธต์€ ๋ง๊ทธ๋Œ€๋กœ '๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ์—ญํ• '๋กœ๋งŒ ์ž‘์šฉํ•ฉ๋‹ˆ๋‹ค. Hidden Layer: ์€๋‹‰์ธต. ์ž…๋ ฅ์ธต๊ณผ ์ถœ๋ ฅ์ธต ์‚ฌ์ด์— ์žˆ๋Š” ๋ชจ๋“  ์ธต์„ ์€๋‹‰์ธต์ด๋ผ ๋ถ€๋ฆ…๋‹ˆ๋‹ค. ํผ์…‰ํŠธ๋ก ์˜ ๊ธฐ๋ณธ ๊ตฌ์กฐ์ธ '๊ฐ€์ค‘ํ•ฉ ์—ฐ์‚ฐ' ๋ฐ 'ํ™œ์„ฑํ™” ํ•จ์ˆ˜'๋กœ ๊ตฌ์„ฑ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค. ๋…ธ๋“œ ์ˆ˜๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ž„์˜๋กœ ์„ค์ • ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ฃผ๋กœ 'relu'๊ฐ€ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋…ธ๋“œ์—์„œ ์ผ์–ด๋‚˜๋Š” ๋ณต..

    [๋”ฅ๋Ÿฌ๋‹]ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹(sklearn์˜ RandomizedSearchCV, keras_tuner์˜ RandomSearch)

    RandomSearch๋ฅผ ์ด์šฉํ•œ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ 0. ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ๋ฐ Normalization # ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ from tensorflow.keras.datasets import mnist (X_train, y_train), (X_test, y_test) = mnist.load_data() # input ๋ฐ target ๋ฐ์ดํ„ฐ ํ™•์ธ X_train.shape set(y_train) # Normalization X_train = X_train / 255. X_test = X_test / 255. 1. ๋ชจ๋ธ๋ง from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout..

    [๋”ฅ๋Ÿฌ๋‹]keras_cifar100 ์ด์šฉํ•œ ๊ฐ„๋‹จ ์‹ ๊ฒฝ๋ง ๋ฐ ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€, ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹

    0) ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ๋ฐ ํ™•์ธ, Normalization import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.optimizers import Adam from tensorflow.keras import regularizers # ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ from tensorflow.keras.datasets import cifar100 (X_train, y_train), (X_test, y_test) = cifar100.load_data() # ๋ฐ์ดํ„ฐ shape..

    [๋”ฅ๋Ÿฌ๋‹]๊ฐ„๋‹จ ์‹ ๊ฒฝ๋ง ๋ฐ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ๋ง, ์„ฑ๋Šฅ ๋น„๊ต

    0) ๋ฐ์ดํ„ฐ ํ™•์ธ ๋ฐ ์ „์ฒ˜๋ฆฌ # ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ import tensorflow as tf boston_housing = tf.keras.datasets.boston_housing (X_train, y_train), (X_test, y_test) = boston_housing.load_data() # ๋ฐ์ดํ„ฐ ์…‹ shape ํ™•์ธ X_train.shape # ๋ฐ์ดํ„ฐ ํŠน์„ฑ scale ๋งž์ถ”๊ธฐ from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) 1) ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ model = ..

    [TIL]74. ์‹ ๊ฒฝ๋ง - Hyper parameter

    ํ‚ค์›Œ๋“œ ๊ต์ฐจ ๊ฒ€์ฆ(Cross_Validation) Grid_Search, Random_Search Scikit-learn/Keras Tuner ํŒŒ๋ผ๋ฏธํ„ฐ vs ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŒŒ๋ผ๋ฏธํ„ฐ : ๋งค๊ฐœ๋ณ€์ˆ˜, ๋ชจ๋ธ ๋‚ด๋ถ€์—์„œ ๊ฒฐ์ •๋˜๋Š” ๋ณ€์ˆ˜, ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฒฐ์ •๋˜๋Š” ๊ฐ’ ex) ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ํšŒ๊ท€๊ณ„์ˆ˜, ๊ฐ€์ค‘์น˜, ํŽธํ–ฅ ๋“ฑ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ : ๋ชจ๋ธ๋ง ์‹œ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์„ธํŒ…ํ•ด์ฃผ๋Š” ๊ฐ’, ์ข…๋ฅ˜๊ฐ€ ๊ต‰์žฅํžˆ ๋งŽ์Œ ex) ํ•™์Šต๋ฅ , epoch, ์˜ตํ‹ฐ๋งˆ์ด์ €, ํ™œ์„ฑํ™” ํ•จ์ˆ˜ ๋“ฑ ์ฆ‰, ์‚ฌ๋žŒ์ด ๊ฒฐ์ •ํ•˜๋Š๋ƒ ์•ˆํ•˜๋Š๋ƒ์— ๋”ฐ๋ผ ๋‚˜๋‰˜์–ด์ง‘๋‹ˆ๋‹ค. ์ฐธ๊ณ  Cross Validation(K fold) ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๊ต์ฐจ๊ฒ€์ฆ(Cross-Validation ; CV)์„ ์ด์šฉํ•˜์—ฌ ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํƒ์ƒ‰ํ•˜๋“ฏ, ๋‹น์—ฐํžˆ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฒ”์ฃผ์— ์†ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹๋„ ๊ฐ€๋Šฅ(์˜คํžˆ๋ ค ๋” ๋งŽ์€ ..