Jayden`s

    [1110]๋”ํ•˜๊ธฐ ์‚ฌ์ดํด

    import sys N = int(sys.stdin.readline()) S = N count = 0 while True: N = (N % 10) * 10 + (N // 10 + N % 10) % 10 count += 1 if N == S: print(count) break else: continue 1110 ๋”ํ•˜๊ธฐ ์‚ฌ์ดํด

    [10951]A+B-4

    import sys while True: try: A, B = map(int, sys.stdin.readline().split()) print(A + B, sep='\n') except: break 10951 A+B-4 ๋Ÿฐํƒ€์ž„ ์˜ค๋ฅ˜ ๋ถ€๋ถ„ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒŒ ์ข€ ์• ๋จน์—ˆ๋˜ ๋ฌธ์ œ! ์˜ค๋ฅ˜ ํ”ผํ•ด๊ฐ€๋Š” ๋ฒ• ์ตํž ์ˆ˜ ์žˆ์—ˆ๋‹ค. :)

    [TIL]78. ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง(RNN)

    ํ‚ค์›Œ๋“œ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง(Recurrent Neural Network ; RNN) LSTM GRU Attention ์–ธ์–ด ๋ชจ๋ธ(Language Model) ๋ฌธ์žฅ๊ณผ ๊ฐ™์€ ๋‹จ์–ด ์‹œํ€€์Šค์—์„œ ๊ฐ ๋‹จ์–ด(ํ† ํฐ)์˜ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ชจ๋ธ Word2Vec๋„ ๊ทธ ์˜ˆ์‹œ ์ค‘ ํ•˜๋‚˜ ํ†ต๊ณ„์  ์–ธ์–ด ๋ชจ๋ธ(Statistical Language Model, SLM) ์‹ ๊ฒฝ๋ง ์–ธ์–ด ๋ชจ๋ธ ์ด์ „ ๋ฐฉ์‹์œผ๋กœ ๋‹จ์–ด์˜ ๋“ฑ์žฅ ํšŸ์ˆ˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์„ ๊ณ„์‚ฐ ํ•œ๊ณ„์  : ํšŸ์ˆ˜ ๊ธฐ๋ฐ˜์œผ๋กœ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๊ธฐ์— ํฌ์†Œ์„ฑ(Sparsity) ๋ฌธ์ œ ์กด์žฌ ํฌ์†Œ์„ฑ ๋ฌธ์ œ : ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์—†๋Š” ๋‹จ์–ด๋Š” ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์—†๋Š” ๋ฌธ์ œ ์‹ ๊ฒฝ๋ง ์–ธ์–ด ๋ชจ๋ธ(Neural Language Model, NLM) ํšŸ์ˆ˜ ๊ธฐ๋ฐ˜์ด ์•„๋‹Œ Word2Vec ํ˜น์€ fastText ๋“ฑ์˜ ์ถœ๋ ฅ๊ฐ’์ธ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋ฅผ ์‚ฌ์šฉ..

    [IT, ํ•€ํ…Œํฌ]220303(๋ชฉ)_ํ•€ํ…Œํฌ ๊ธฐ์—…

    [IT, ํ•€ํ…Œํฌ]220303(๋ชฉ)_ํ•€ํ…Œํฌ ๊ธฐ์—…

    - ํ•€ํ…Œํฌ ๊ธฐ์—…๋“ค - ๋น„๋ฐ”๋ฆฌํผ๋ธ”๋ฆฌ์นด, ํ† ์Šค๋ฑ…ํฌ, ํ•€๋‹ค, ๋ Œ๋”ง

    [TIL]77. ๋‹จ์–ด ๋ถ„์‚ฐ ํ‘œํ˜„(Distributed Representation)

    ํ‚ค์›Œ๋“œ ์ž„๋ฒ ๋”ฉ(Embedding) (vs ์›ํ•ซ์ธ์ฝ”๋”ฉ) Word2Vec CBoW, Skip-gram Ditributed Representation ๋ถ„ํฌ ๊ฐ€์„ค : "๋น„์Šทํ•œ ์˜๋ฏธ๋ฅผ ์ง€๋‹Œ ๋‹จ์–ด๋“ค๋ผ๋ฆฌ ๋ชจ์—ฌ์žˆ๋‹ค" == ์œ ์œ ์ƒ์ข… ๋ถ„์‚ฐ ํ‘œํ˜„(Distributed Representation) : ๋ถ„ํฌ ๊ฐ€์„ค์„ ์ „์ œ๋กœ, ๋‹จ์–ด๋ฅผ ๋ฒกํ„ฐํ™” ์›-ํ•ซ ์ธ์ฝ”๋”ฉ(One-Hot Encoding) ๋ฒ”์ฃผํ˜• ๋ณ€์ˆ˜๋ฅผ ๋ฒกํ„ฐํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜ ์ง๊ด€์ ์ด๊ณ  ์‰ฝ๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์Œ ๋‹จ์  : ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„๋ฅผ ๊ตฌํ•  ์ˆ˜ ์—†์Œ(ํ•ญ์ƒ ๋‚ด์ ๊ฐ’์ด 0, ๋‹จ์–ด ์‚ฌ์ด ๊ด€๊ณ„ ํŒŒ์•… ๋ถˆ๊ฐ€), ์ฐจ์›์˜ ์ €์ฃผ ์ž„๋ฒ ๋”ฉ(Embedding) ๋‹จ์–ด๋ฅผ ๊ณ ์ •๋œ ๊ธธ์ด์˜ ๋ฒกํ„ฐ(์ฐจ์›์ด ์ผ์ •ํ•œ ๋ฒกํ„ฐ)๋กœ ํ‘œํ˜„ 0, 1๋กœ๋งŒ ์ด๋ฃจ์–ด์ง„ ์›ํ•ซ์ธ์ฝ”๋”ฉ๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ์—ฐ์†์ ์ธ ๊ฐ’์„ ๊ฐ€์ง„ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ ์ž„๋ฒ ๋”ฉ ์ž์ฒด์˜ ๊ฐœ๋…..