Jayden`s

    Simple Linear Regression(๋‹จ์ˆœ์„ ํ˜•ํšŒ๊ท€)

    1. ๋‹จ์ˆœ์„ ํ˜•ํšŒ๊ท€๋ชจ๋ธ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์ „์ œ๋˜์–ด์•ผ ํ•˜๋Š” ์กฐ๊ฑด๋“ค์— ๋Œ€ํ•ด ์ฐพ์•„๋ณด์‹œ๊ณ  ๋…ผํ•ด๋ณด์„ธ์š”. ๋‘ ๋ณ€์ˆ˜๊ฐ€ ์„ ํ˜•๊ด€๊ณ„์— ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ‘œ๋ณธ ์ถ”์ถœ์ด ๋ฌด์ž‘์œ„๋กœ ์ด๋ค„์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ง์„ ์„ ๊ทธ๋ฆฌ๊ธฐ ์œ„ํ•ด ์ตœ์†Œ 2๊ฐœ ์ด์ƒ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ์–ด์•ผํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ X๊ฐ’์—์„œ ์˜ค์ฐจ์˜ ํ‰๊ท ์€ 0์„ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค.(Zero-conditional mean) ์ฃผ์–ด์ง„ X๊ฐ’์—์„œ ์˜ค์ฐจ๋“ค์€ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ์ด๋ค„์•ผ ํ•ฉ๋‹ˆ๋‹ค.(Normality ; ์ •๊ทœ์„ฑ) ์ฃผ์–ด์ง„ X๊ฐ’์—์„œ ์˜ค์ฐจ๋“ค์ด ๊ฐ™์€ ์ •๋„๋กœ ํผ์ ธ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.(homoscedasticity ; ๋“ฑ๋ถ„์‚ฐ์„ฑ) ์ฃผ์–ด์ง„ X๊ฐ’์—์„œ ์˜ค์ฐจํ•ญ๋“ค๋ผ๋ฆฌ๋Š” ๋…๋ฆฝ์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.(Independence ; ๋…๋ฆฝ์„ฑ) ์œ„์˜ ์ „์ œ๋ฅผ ์กฐ๊ธˆ ๋” ์ž์„ธํžˆ ์‚ดํŽด๋ณด์ž๋ฉด ์œ„์™€ ๊ฐ™์€ ๊ทธ๋ฆผ์—์„œ ๋ชจ๋“  ์ ์„ ์ง€๋‚˜๋Š” ์ง์„ ์„ ๊ทธ์„ ์ˆ˜๋Š” ์—†์ง€๋งŒ ์–ด๋–ค ์ง์„ ์„ ๊ธฐ์ค€์œผ๋กœ ..

    [TIL]22.Section Challenge ๋ฐ ๋ณต์Šต

    ํ—ท๊ฐˆ๋ฆฌ๊ฑฐ๋‚˜ ์ž์„ธํžˆ ์•Œ๊ณ  ์‹ถ์€ ๋‚ด์šฉ ํ‚ค์›Œ๋“œ ๋ณ„๋กœ ์ •๋ฆฌํ•ด์„œ ๋ธ”๋กœ๊น…ํ•˜๊ธฐ

    [TIL]21.Session ๋ณต์Šต

    ํ‹ˆํ‹ˆํžˆ ๋ณต์Šตํ–ˆ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ๋Š”๋ฐ ์ง๊ด€์ ์œผ๋กœ ์‰ฝ๊ฒŒ ์„ค๋ช…์ด ์•ˆ๋˜๋Š” ๊ฐœ๋…๋“ค์ด ์€๊ทผ ์žˆ๋‹ค. Sprint1 ์ฒดํฌํ•  ๊ฒƒ EDA : ์ˆ˜์น˜(Statistics)์™€ ๊ทธ๋ฆผ(์‹œ๊ฐํ™”)๋ฅผ ๊ผญ ๊ฐ™์ด ๋ณด๋ฉด์„œ ๋ฐ์ดํ„ฐ ํ™•์ธํ•  ๊ฒƒ Feature engineering Data manipulation Basic Derivative(๋ฏธ๋ถ„) : ๋ชจ๋ธ์ด cost function์˜ ์ตœ์†Ÿ๊ฐ’์„ ์ฐพ์„ ๋•Œ ์‚ฌ์šฉ(๋„ํ•จ์ˆ˜=0) Sprint2 ์ฒดํฌํ•  ๊ฒƒ ๊ฐ€์„ค๊ฒ€์ • : ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ๊ฒ€์ • ์ง„ํ–‰ -> ๋‹จ, ๋ฐ์ดํ„ฐ๋Š” sample์ž„ ์ฆ‰, ๊ฐ€์„ค๊ฒ€์ •์€ 'sample์ด population์„ ๋Œ€๋ณ€ํ•  ์ˆ˜ ์žˆ๋Š๋ƒ'๋ฅผ ๋ณด๋Š” ๊ฒƒ P-value ์‹ ๋ขฐ๊ตฌ๊ฐ„(Confident Interval) ๋ฒ ์ด์ง€์•ˆ : ์‚ฌ์ „๊ฐ€์„ค์„ ๋ฐ์ดํ„ฐ(๊ด€์ธก์น˜)๋ฅผ ํ†ตํ•ด ์‚ฌํ›„๊ฐ€์„ค๋กœ ์—…๋ฐ์ดํŠธ Sprint3 ..

    ๋ฒ ์ด์ง€์•ˆ ์˜ˆ์‹œ ํ’€์ด(Bayesian Problem example)

    1๋ฒˆ At a certain stage of a criminal investigation, the inspector in charge is 60% convinced of the guilty of a certain suspect. Suppose now that a new piece of evidence that shows that the criminal has a left-handedness is uncovered. If 20% of population possesses this characteristic, how certain of the guilt of the suspect should the inspector now be if it turns out that the suspect is among th..

    ํฐ ์ˆ˜์˜ ๋ฒ•์น™, ์ค‘์‹ฌ๊ทนํ•œ์ •๋ฆฌ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„

    1. ํฐ ์ˆ˜์˜ ๋ฒ•์น™ df3.describe() # ๋Œ€๋žต์ ์ธ ๋ฐ์ดํ„ฐ์˜ ๋ชจ์ˆ˜๋ฅผ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค. ๋Œ€๋žต 5000๊ฐœ๋งŒ ๊ฐ€๋„ ๊ฐ’์ด ๋น„์Šทํ•ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. dat = [] np.random.seed(42) for i in np.arange(start = 0, stop = 18000, step = 100) : s = np.random.choice(df3, i) dat.append(s.var()) dat (pd .DataFrame(dat) .plot .line(color = '#4000c7') .axhline(y = 192, color = '#00da75') ); ํ‘œ๋ณธ์˜ ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก ์ ์ฐจ ๋ถ„์‚ฐ๊ฐ’์ด ์ˆ˜๋ ดํ•˜๋Š” ๋ชจ์Šต์„ ํ™•์ธํ•˜์˜€์Šต๋‹ˆ๋‹ค. 2. ์ค‘์‹ฌ๊ทนํ•œ์ •๋ฆฌ sample_means = []..