Jayden`s

    [TIL]15.์Šค์ฑŒ3

    matrix๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒƒ ๊ณต๋ถ„์‚ฐ, ์ƒ๊ด€๊ณ„์ˆ˜ ๊ณ ์œ ๊ฐ’, ๊ณ ์œ ๋ฒกํ„ฐ์— ๋Œ€ํ•œ ์ดํ•ด ๋ฐ์ดํ„ฐ ์ •๊ทœํ™” PCA Clustering

    ๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ ์˜ˆ์‹œ2

    # Import Packages import pandas as pd import numpy as np import seaborn as sns # dataset upload df = sns.load_dataset("titanic") df 1. index ๋ฐ columns ๋‹ค๋ฃจ๊ธฐ Q. 'survived' ์ปฌ๋Ÿผ์„ index๋กœ ๋งŒ๋“ค์–ด ํ™•์ธํ•˜๊ณ , ๋‹ค์‹œ 'survived' ์ปฌ๋Ÿผ์„ ๋Œ๋ ค๋†“์€ ๋’ค ์ธ๋ฑ์Šค๋ฅผ ์ดˆ๊ธฐํ™”์‹œํ‚ค์„ธ์š”. df.set_index('survived', inplace=True) temp = df.index df.reset_index(drop=True, inplace=True) df['survived'] = temp Q. DataFrame df์˜ ์ปฌ๋Ÿผ๋ช…..

    ๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ ์˜ˆ์‹œ1

    # Import Packages import pandas as pd import numpy as np import seaborn as sns # dataset upload df = sns.load_dataset("titanic") df 1. ๊ฒฐ์ธก์น˜ ๋‹ค๋ฃจ๊ธฐ Q. 'deck'์ปฌ๋Ÿผ์˜ ๊ฒฐ์ธก์น˜ ๊ฐœ์ˆ˜๋Š” ๋ช‡ ๊ฐœ์ธ๊ฐ€์š”? df['deck'].isna().sum() # ํŠน์ • ์ปฌ๋Ÿผ์— ๊ฒฐ์ธก์น˜ ๊ฐœ์ˆ˜ ์„ธ๊ธฐ Q. ๋ชจ๋“  ๊ฒฐ์ธก์น˜๋Š” ์ปฌ๋Ÿผ๊ธฐ์ค€ ์ง์ „์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•˜๊ณ , ์ฒซ๋ฒˆ์งธ ํ–‰์— ๊ฒฐ์ธก์น˜๊ฐ€ ์žˆ์„ ๊ฒฝ์šฐ ๋’ค์— ์žˆ๋Š” ๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•˜์„ธ์š” df['deck'].fillna(method='ffill', inplace=True) # ๋จผ์ € ์ „์ฒด์— ๋Œ€ํ•ด์„œ ์ง์ „๊ฐ’ ์ ์šฉ df['deck']...

    Cramer's rule(ํฌ๋ ˆ์ด๋จธ ์†Œ๊ฑฐ๋ฒ•)

    ๋‹ค์Œ ๋งํฌ์˜ ๋‚ด์šฉ์„ ์ฐธ์กฐํ•˜์—ฌ Cramer's rule์„ ์‚ฌ์šฉํ•ด x1 , x2 , x3 ์˜ ๊ฐ’์„ ๊ตฌํ•˜์„ธ์š”. https://youtu.be/6StS7VjtuGI x1 + 2x3 = 6 −3x1 + 4x2 + 6x3 = 30 −x1 −2x2 + 3x3 = 8 ๊ฐœ์ธ์ ์œผ๋กœ ์œ„์˜ ์˜์ƒ์„ ๋Œ€๋žต ์ดํ•ดํ•˜๊ณ  ์ฝ”๋“œ๋กœ ๊ตฌํ˜„ํ•ด๋ดค๋Š”๋ฐ, ๊ณ„์‚ฐ ํšŸ์ˆ˜๋ฅผ ๋Š˜๋ฆด ๋•Œ๋งˆ๋‹ค ๊ณ„์† ๊ฐ’์ด ๋‹ฌ๋ผ์ ธ์„œ ๊ตฌ๊ธ€๋งํ•ด์„œ ๋‚˜์˜จ ๊ณต์‹์„ ์ ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. import numpy as np A = np.array([[1, 0, 2], [-3, 4, 6], [-1, -2, 3]]) b = np.array([[6], [30], [8]]) det(A)์˜ ๊ฐ’์„ ๊ฐ๊ฐ 1ํ–‰์— b๋ฅผ ๋„ฃ๊ณ  ๋‚˜์˜จ det ๊ฐ’, 2ํ–‰์— ๋„ฃ๊ณ  ๋‚˜์˜จ ๊ฐ’, 3ํ–‰์— ๋„ฃ๊ณ  ๋‚˜์˜จ ๊ฐ’์„ ๋‚˜๋ˆ„๋ฉด ๊ทธ๊ฒŒ ๊ณง ํ•ด๊ฐ€..

    ๋ฒกํ„ฐ ๋‚ด์  ๋ฐ projection

    ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ (x, y)์— ๋Œ€ํ•ด์„œ y = x ๋ผ๋Š” ๋ฒกํ„ฐ์— ๋Œ€ํ•ด projection์„ ๊ณ„์‚ฐํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์ž‘์„ฑํ•˜์„ธ์š”. (x, y) ๋Š” (0, 0) ์—์„œ (x, y)๋กœ ๊ฐ€๋Š” ๋ฒกํ„ฐ๋ผ ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ดํ›„ ์ž…๋ ฅ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒ๋ž€์ƒ‰ ์„ ์œผ๋กœ, y = x ๋ผ๋Š” ๋ฒกํ„ฐ๋ฅผ ๋นจ๊ฐ„์ƒ‰ ์„ ์œผ๋กœ, ๋งˆ์ง€๋ง‰์œผ๋กœ projection ๋œ ์„ ์„ ๋…น์ƒ‰ ์ ์„ (dashed)์œผ๋กœ ๊ทธ๋ž˜ํ”„์— ๊ทธ๋ฆฌ์„ธ์š”. y=x์— ํ•ด๋‹นํ•˜๋Š” ์ž„์˜์˜ ๋ฒกํ„ฐ([10, 10])๋ฅผ ์„ค์ •ํ•˜์—ฌ ๋‚ด์  ๋ฐ projection์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. import numpy as np v = [7, 4] a = [10, 10] # y = x ์ƒ์˜ ์ž„์˜์˜ ๋ฒกํ„ฐ ์„ ์ • # u๋Š” v๋ฅผ y = x ์ƒ์— projectionํ•œ ๋ฒกํ„ฐ def myProjection(v, a): v = np.array(v) a = np..